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Abstract.

Studies of fisheries bycatch often result in data that are characterized by a smooth
distributionof positiveamountsof per-setbycatch,but with anextremelylargenumberof
zeroobservations. Thisdiscontinuityatzerois difficult to fit with astandarddistribution.
One approach is to model per-set bycatch with a mixture of two distributions, with one
componentrepresentingthezeroobservationsandtheotherrepresentingtheobservations
of positivebycatch.In this report,wedescribesuchamixturemodelthatis suitablewhen
the bycatch observations have been rounded to integer amounts.  In particular, when
“rounded” zeros (representing small amounts of bycatch) and “true” zeros (representing
no bycatch) are indistinguishable in the data, the mixture model can be used to estimate
the proportion of each.

We fit this model to tuna bycatch data collected by observers aboard the U.S. tuna
purse-seinefleetin theeasterntropicalPacificOceanduringtheyears1989-1992.Weuse
themodelto estimatebycatchperset,andallow themodelparametersto dependuponone
or more covariates.  We then show how to estimate mean bycatch per set fishery-wide, by
summing out over those covariates.  Extensions and limitations are discussed.

1.  Introduction.

Many fisheries catch, in addition to the target species, unwanted but unavoidable
individuals of other, non-target, species.  This “bycatch” of unwanted individuals is
generally discarded, and in many fisheries, few, if any, individuals survive their capture
anddiscard.Estimatingtheextentof suchbycatchis becomingincreasinglyimportantas
fisheriesmanagersmoreoftenhaveto contendwith situationswhereunwantedindividuals
from a fishery include individuals which are desirable in other contexts.  Bycatch in one
fisherymayincludejuvenilemembersof thetargetspeciesin thesameor anotherfishery,
or individuals from threatened, endangered or protected species.  For example, juvenile
mackerel are caught and discarded, and sea turtles caught and drowned, by shrimp
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trawlers in the Gulf of Mexico (e.g., Collins and Wenner, 1988; Caillouet et al., 1991).
Sharks, billfish, and juvenile tuna are caught by tuna purse-seiners in the eastern tropical
Pacific Ocean (e.g., Au, 1991).  Numerous tropical fish species are caught by shrimp
trawlers around islands in the south Pacific Ocean (e.g., Kulbicki and Wantiez, 1990).
Various prohibited species are captured as bycatch in the Bering Sea domestic trawl
fisheries (Berger et al., 1989).  These are only a few of the numerous fisheries plagued
with bycatch.

 Although of increasing interest, the amount of bycatch generated by various fisheries
remains relatively unstudied.  Bycatch is generally discarded without being weighed or
measured exactly; few fisheries routinely estimate or measure bycatch in any form.
Because complete data are most often lacking, bycatch usually must be estimated rather
thanreporteddirectly (e.g.,Bergeretal.,1989). Oneparticularlytroublesomeproblemin
bycatch estimation is developing a statistical model that is sufficiently flexible to account
for a variety of data types, so that bycatches can be compared from different
circumstances.

TheU.S.tunapurse-seinefisheryin theeasterntropicalPacificOcean(ETP)presents
such a problem, but, in contrast to many other fisheries, also provides an opportunity to
developasolutionto theproblem,becauseinformationonbycatchof tuna(includingboth
non-targettunaspeciesandjuvenilesof targetspecies)hasbeencollectedfrom thefishery
since 1988.

 A flexible approach is required to model tuna bycatch from this fishery because the
purse-seine vessels capture fish using three distinctly different fishing strategies:  “log
fishing”, “school fishing” and “dolphin fishing”.  Log fishing is the practice of catching
fish by making purse-seine sets on tuna associated with floating objects.  These sets
usually capture schools of small yellowfin tuna (Thunnus albacares) or mixed schools of
small yellowfin and like-sized skipjack tuna (Katsuwonus pelamis).  School fishing is the
practice of capturing schools composed purely of (usually small) tuna (again, either pure
schools of yellowfin or mixed schools of yellowfin and skipjack), located by surface
disturbances created by the schools.  Dolphin fishing is the practice of catching tuna
located by surface disturbances created by closely associated dolphins (e.g., Orbach
1977).  Tuna associated with dolphins almost always consist of pure schools of large
yellowfin.  Log fishing generates large amounts of tuna bycatch, very frequently (with
almost every set).  School fishing generates moderate amounts of tuna bycatch much less
often.  Dolphin fishing generates small amounts of tuna bycatch, and only very
infrequently. Thus,tunabycatchdatafrom dolphinfishingarecharacterizedby many zero
observations, while data from log fishing contain mostly non-zero observations.  School
fishing presents an intermediate case.

 We develop here a method for modelling bycatch per set for these three disparate
typesof bycatchdata,andshow how to usethemodelto estimatemeanbycatchpersetfor
eachsettype. Thefocusof thepresentstudyis developmentanddescriptionof themodel
asasolutionto acommonproblemin bycatchestimation.Detailedresultsof applyingthe
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model,andits implicationsfor theU.S.tunapurse-seinefisheryin theETP, arethesubject
of another paper (Edwards and Perkins, in preparation).

 We first describe the general characteristics of the available bycatch data, and then fit
a statistical model to those data to investigate some of the factors affecting the amount of
tuna bycatch per set.  We define an appropriately flexible probability distribution to
describe the observed data, then use likelihood methods to select relevant covariates and
computeparameterestimatesfor thatdistribution. Finally, weusethosevaluesto estimate
meanbycatchperset,bothasa functionof geographiclocationandfishery-wide,for each
settype. Thespecificapplicationsandresultspresentedhereaddressonly tunabycatchin
the ETP purse-seine fishery, and do not include bycatch of other species (e.g., marine
mammals, billfish, sharks, sea turtles).  However, the method presented here is generally
applicable to any situation involving analysis of data sets characterized by varying
proportions of zeros.

2.  Data.

Although more detailed reports would be desirable, currently available data for the
U.S. purse-seine fleet only include per-set estimates of total tons of tuna discarded.  Data
on size-classes and species composition of this discarded tonnage are not available, nor
aredataavailableondiscardsof speciesotherthantuna. This reportfocusesondatafrom
the U.S. fleet only, and does not include direct information about bycatch from the
considerable number of non-U.S. purse-seiners fishing in the ETP.

Data were collected by National Marine Fisheries Service (NMFS) or Inter-American
Tropical Tuna Commission (IATTC) observers placed aboard U.S. tuna purse-seiners
during routine fishing trips to the eastern tropical Pacific Ocean.  Each agency provided
about 50% of the observers; agencies alternated sending observers on departing trips.
Observers recorded time and position of all sets made by U.S. vessels fishing in the ETP
during the 31-month “study period” September 1, 1989 - March 30, 1992.  Observer
coverage was 100% during this period.  However, bycatch data were available only from
approximatelyhalf of thesetrecordsduringtheperiodSeptember1, 1989- July30,1990
because during this period only IATTC observers were collecting bycatch data.  During
the remaining period (August 1, 1990 - March 30 1992) observers from both agencies
recordedbycatchfor all sets.Thebeginningof the“studyperiod” is thefirst timeatwhich
both NMFS and IATTC records are available for analysis (prior to this, IATTC data are
considered proprietary).  The end of the “study period” corresponds to the most recent
complete data that were available at the time when this study was initiated.

Although it would have been desirable to take direct measurements of the weight of
thebycatch(tonsof tunadiscarded)for eachindividualset,thiswasnotfeasible.For most
sets, observers estimated the bycatch by counting the number of brailers (large fish
baskets) used to empty the net after the set, multiplying this number by an estimated
tonnage per brailer (based on advice from the fishing captain and other experienced
crewmen), and then multiplying this estimated total weight caught by the estimated
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fraction of non-target tuna in the catch.  Observers estimated this fraction of non-target
tunaby eye,eitherby estimatingthecompositionof brailers,or by observingcatchsorting
on deck.  Occasionally the majority of the catch was discarded before being brailed
aboard.  In these cases, observers estimated discard by first estimating by eye the weight
of the total catch, and then estimating the tonnage loaded by brailer.  The difference
between these two estimates (i.e., tons caught minus tons loaded) was the estimated tons
of bycatch and was assumed to include only discarded tuna.

Observerestimatesof bycatchtonnagewereapparentlyroundedto integervalues,with
the rounding interval increasing with the amount of bycatch.  For very small amounts of
bycatch,weightswereroundedto thenearesttonsothatit wasnotpossiblein thesesetsto
distinguish observations with no bycatch from those with very small amounts (less than
onehalf ton). Increasingdifficulty with estimatingincreasinglylargetonnagesof bycatch
apparentlycontributedto asystematictendency in thedatatowardsroundingto thenearest
5 or 10tonsfor smallandmediumestimatesof bycatchandto thenearest25or 50tonsfor
the large estimates (Figures 1-5).  For sets with moderately small amounts of bycatch,
observerestimatestendedto bemoreprecisebecausethebycatchaswell asthetargetfish
were brailed aboard the vessel, then sorted on deck where the bycatch could be easily
comparedto thetotalcatch. For setswith largeamountsof bycatch,thefishmaynothave
been brought on board, making precise estimates more difficult and rounding tendencies
greater.

Thevarioussourcesof measurementerrorandrounding,asdescribedabove,introduce
into our data uncertainty which we did not attempt to account for.  In the absence of data
or studiesfor “groundtruthing” observerestimatesof bycatch,or aplausiblemodelfor the
measurement errors, we treated the bycatch weight estimates as exact measurements.

Bycatchwasrecordedfor 59%(2110of 3590,Table1) of observeddolphinsets,76%
(960 of 1226) of observed schoolfish sets, and 75% (998 of 1328) of observed log sets.
These sets generated 134, 1098, and 9819 tons of observed bycatch, respectively.  The
relatively smallbycatchtotalsfor schoolfishanddolphinsetsaredueto thelargenumbers
of setsof thosetwo typeswith zerobycatchrecorded.Positive tunabycatchwasrecorded
in 65%(650of 998,Table1) of log setswith bycatchobserved,but in only 8%(80of 960)
of schoolfish sets and only 0.7% (10 of 2110) of dolphin sets with bycatch observed.  We
ignored log and school fishing in area 2 in these analyses, because 0 schoolfish sets and
only 10 log sets (4 with estimated bycatch) occurred in this area (Table 1).  We also
eliminated from the analyses 7 sets in which the entire catch (target catch plus bycatch)
was lost due to equipment failure.
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TABLE 1.  Effort data (numbers of sets) for the U.S. tuna purse-seine fleet fishing
in the eastern tropical Pacific Ocean, 1989-1992.  Geographic areas as defined in
Federal Register (1989).  N is the total number of sets in a given area, n is the
number of sets with bycatch recorded, and n+ is the number of sets with positive
bycatch recorded.

3.  Methods.

3.1  Modelling bycatch per set.

The primary difficulty in defining a probability distribution to model bycatch per set
was sufficient flexibility to describe the disparate distributions observed for the three
different set types (Figures 1-5).  We chose a modified negative binomial distribution,
known as the negative binomial with added zeros (Johnson and Kotz, 1969), because this
distribution could accommodate the wide range in the proportion of zero observations, as
well as the relatively heavy tails in the observed distributions of bycatch for all three set
types (see Discussion for two other models that we considered but rejected).

The negative binomial distribution with added zeros is a mixture of a negative
binomial distribution and a discrete probability mass at zero.  Under this model, bycatch
per set is either exactly zero with probability (p) or has a negative binomial distribution
with probability(1-p). Thenegativebinomialportionof thisdistributioncanbeviewedas
representing strictly positive amounts of bycatch, rounded to integer values.  Thus, zero
values that are part of the negative binomial can be interpreted as observations of small
amounts of discard, rounded down to zero.  Zero values from the probability mass can be

Set Type Ar ea N n n+

Dolphin 1 2496 1445 10

2 498 272 5

3 596 393 4

Total 3590 2110 19

Schoolf-
ish

1 399 279 32

2 0 0 0

3 867 681 48

Total 1266 960 80

Log 1 537 326 257

2 10 4 4

3 791 672 393

Total1

1. Totalsfor log setsdonot includesetsin geographicarea2.
See text for description.

1328 998 650
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interpreted as exact zeros.  The probability function for this modified negative binomial
distribution is

whereY is anindividualobservation(here,anumberof tonsof bycatchpersetfor agiven
set type), (p) is the probability of an observation coming from the “perfect zero” state,
(1-p) is theprobabilityof anobservationcomingfrom thenegativebinomialstate,and(µ)
and (a) are, respectively, the mean and variance parameters of the conditional negative
binomial.

The parameter (a) determines the shape of the distribution.  As (a) tends to zero, the
conditional negative binomial distribution in the mixture tends to a Poisson distribution.
As (a) increases, the conditional negative binomial becomes more skewed, with a heavier
tail andhigherprobabilityof azeroobservation. Theparameter(p) is amixing parameter
whichcontrolstherelativeimportanceof thenegativebinomialandtheprobabilitymassat
zero. When(p) is one,thedistribution is aprobabilitymassatzero. When(p) is zero,the
probabilitydistributionbecomesstrictly negativebinomialandexpectedbycatchpersetis
the mean of the negative binomial, (µ).

The expected value for individual observations (i.e., mean tons bycatch per set in this
study) from this probability distribution is

E[Y] = (1-p)µ [2]

while the variance of an individual observation is

var[Y] = (1-p)(µ  +(a+p)µ2) . [3]

Geographic area, tons of tuna loaded (i.e., commercial catch), time of day, and month
wereall factorswhichweconsideredusingaspotentialcovariatesin theanalysis.Wedid
notattemptto accountfor any long-term(i.e.,yearto year)trendin bycatchrates,because
our data included too few years for such an analysis.

We included geographic area in the analysis because of obvious differences in
amountsof bycatchandeffort betweensettypesandfishingareasin thedata. A priori, we
selected as geographic strata the three areas (Figure 6) currently used to determine
comparability of U.S. and non-U.S. dolphin mortality rates (Federal Register, 1989).
These roughly define the major fishing areas in the system.  The total numbers of sets
observed in each area, including sets for which bycatch was not recorded, represent the
actual areal distribution of fishing effort during the study period.  As shown in Table 1,
however, observation of bycatch was not proportional to this true distribution of total
effort. In theanalysisthatfollows,it is importantto distinguishbetweenthetotalnumbers

Pr Y y={ }
p 1 p–( ) 1

1 aµ+
--------------- 

  1 a/
,+

1 p–( )Γ y 1 a⁄+( )
y!Γ 1 a⁄( )

--------------------------- 1
1 aµ+
--------------- 

  1 a⁄ aµ
1 aµ+
--------------- 

  y
,








=

y 0=

y 1 2 …, ,=
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of sets,denotedby Ni , j , andthenumbersof setsfor whichbycatchwasobserved,denoted
by ni , j .  The former define the actual distribution of fishing effort, while the latter simply
reflect the sample taken.  Because our sample of sets with bycatch recorded was not
proportionalto thetotal effort (Table1), ignoringareain theanalysiscouldleadto biased
estimates if the mean bycatch per set differs from area to area for a given set type.

We attempted to include tons of catch loaded in the analysis because it is information
that might be available from historical data.  We did not, however, find any statistically
significantrelationshipbetweentonsloadedandbycatchperset(Figure7), andsononeof
the final parameter estimates depend upon tons loaded.

There are some apparent general relationships between time of day or month and
bycatch, but we rejected them as potential covariates for two reasons.  First, the sampling
was unbalanced, so that some times and months were over-represented and some under-
represented.  This unbalance resulted from correlations between set type and time of day
(e.g., most log sets occurred early in the day), and between area and month (e.g., most
dolphin sets occurred in area 2 only during July - September).  With such strong
imbalances in the data, estimates of coefficients for those covariates would be poor.
Second,neithertimeof daynormonthwouldhavecontributedto ourprimaryfocusin this
study, i.e., fishery-wide estimates of mean bycatch for each set type.  In contrast to area,
oursampleof setsfor whichbycatchwasrecordeddid notappearto bebiasedwith respect
to time of day and month.  In the absence of an explicit model for effort as a function of
thosetwo variables,weassumedthatoursamplewasrepresentativewith respectto them.
Thus, our estimates of mean bycatch, averaged over time of day and month, would be the
same whether or not those covariates were included.  Also, the ultimate goal of this study
is to predict average annual bycatch (Edwards and Perkins, manuscript in prep.), rather
than to model bycatch per set in detail as a function of all possible predictors.  Including
such relatively uninfluential covariates would increase prediction error as the available
information in the data would have to be allocated among more estimated parameters.

We computed estimates of the parameters (p), (µ), and (a) by fitting the model [1]
separately to data for each of the three set types, using geographic area as a covariate.  To
determine an appropriate dependence upon area for each of the three model parameters,
we made initial fits for each set type using no areal stratification.  We then used stepwise
likelihood ratio tests to select or reject more complicated models that included areal
dependence for progressively larger numbers of model parameters.  At each step, we
estimatedparametervaluesby maximizingthelikelihoodof theobserveddatafor eachset
type under the modified negative binomial [1], using a quasi-Newton numerical
optimization algorithm. We generated all possible models in this procedure and selected
the simplest model that could not be significantly improved by adding more terms.  It
should be noted that because this is not a linear model, significance levels (i.e. p-values)
from these likelihood ratio tests are approximate.

We used analytic formulæ to compute standard errors for our estimates of the model
parameters (p), (a), and (µ).  These formulæ are based on the large-sample normal
approximationfor themaximumlikelihoodestimatesof theparameters.For comparison,
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we also computed bootstrap standard errors; see Discussion for a description of the
differences.

3.2  Estimating mean bycatch per set.

We used Equation [2] and the maximum likelihood estimates for (p) and (µ) from the
best-fitmodelsto estimatemeanbycatchpersetfor eachsettype. Whenthefittedmodels
indicatedsignificantarealdifferencesin parametervalues(i.e.,for schoolandlog sets,see
Results), we calculated estimates of mean bycatch per set for each individual area.  We
thencalculateda“pooled” estimateof meanbycatchpersetastheweightedaverageof the
area-specificestimates,whereweightingswereproportionalto totaleffort (numberof sets
including sets for which bycatch was not recorded) in each area.  Where no areal
stratification was appropriate (i.e., for dolphin sets, see Results), we calculated only one
“pooled” estimate from [2] using the likelihood estimate values for (p) and (µ) derived
from the unstratified model.

For example, mean bycatch per set type (i) in area (j) would be estimated as

^
E[Y i , j ]  = (1- p̂i , j )µ̂ i , j [4]

and the “pooled” estimate for all areas combined would be estimated as

^
E[Y i ] pooled = Σ

j
N i , j

^
E[Y i , j ]  / Σ

j
N i , j [5]

whereNi , j is thetotaleffort (in numberof sets)of type(i) occurringin area(j). Notethat
this“pooled” calculationis basedontheproportionof totalsets(includingthosefor which
bycatchwasnot recorded)observedin eacharea.This is anestimateof themeanbycatch
per set over the entire fishery during the study period, but is also valid as aprediction of
future bycatch under the assumption that the proportion of effort (sets) in each area
remains constant as the actual number of sets varies.

While Equation [4] provides a straightforward way to compute the MLE for the
product (1-p)µ, it does require that separate estimates for (p) and (µ) first be computed
numerically.  More importantly, the variance of the product of (1-p̂) and(µ̂) can be
difficult to estimateaccurately. It is possible,however, to usethelikelihoodequationsfor
the negative binomial with added zeros to derive simplified forms for the MLE of mean
bycatch per set.  Specifically, only the product (1-p)µ need be estimated, and simple
closed form expressions that do not involve the individual parameter estimates can be
derived through algebraic manipulation of the likelihood equations.  By the invariance
properties of maximum likelihood estimates, these simpler forms give results that are
identical to using [4].

With this closed-form approach, one can show that, withno areal stratification, the
MLE for the product (1-p)µ is simply the sample mean,
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^
E[Y] =

_
y = (1/ n)Σ

k
yk, [6]

where the set type subscript (i) is suppressed for clarity.  Similarly, with complete areal
stratification, the MLE for each area reduces to the sample mean in that area, and the
“pooled” estimateis computedusingEquation[5]. In bothof thesecases,thevariancefor
the MLE of (1-p)µ can be estimated very easily, using the sample variance of the data.

When only the mixing probability (p) depends on area (i.e., for schoolfish sets; see
Results), the MLE for mean bycatch per set in area (j) is slightly more complicated, and
reduces to

^
E[Y j ]  = (nj

+/ nj ) Σ
k

yk
+/ n+, [7]

where nj
+ and nj are the number of positive observations and the total number of

observations in area (j), yk
+ are the positive observations in all areas, and n+ is the total

number of positive observations in all areas.  Similarly, when only the negative binomial
mean (µ) depends on area, the MLE for mean bycatch per set in area (j) reduces to

^
E[Y j ]  = (n+/ n) Σ

k
y j , k

+/ nj
+, [8]

where n+ and n are the number of positive observations and the total number of
observations in all areas, yj,k

+ are the positive observations in area (j), and nj
+ is the total

number of positive observations in area (j).  Again, [5] is used to compute “pooled”
estimates in these latter two cases.  Note that the estimates here for different areas are not
independent, since both formulæ [7] and [8] involve observations from all areas.  In
particular, the first term in [7] is an area-specific estimate of the probability of a positive
observation, while the second term is a “pooled” estimate of the mean for positive
observations.  This is consistent with the areal stratification on which [7] is based, and
providesmorepreciseestimatesof E[Y] thansimplytakingthesamplemeanin eacharea.
A similar observation may also be made about [8].

While variance estimates for [6] are easy to obtain, there is no simple analytic result
for estimating the variance of [7] or [8] (see Discussion for details).  However, although
analyticmethodscouldnotbeappliedeffectively for all threesettypes,bootstrapmethods
can be easily applied in all cases using the previous formulæ for the simplified MLEs of
mean bycatch per set.  Thus, we used bootstrap methods rather than analytic methods to
estimate variances for our estimates of mean bycatch per set.

Bootstrap variance estimates of the estimated mean bycatches per set were computed
by repeatedly (B = 1000 times) sampling with replacement from the observed data,
computing bootstrap replicate values of the appropriate estimators, and calculating
empirical estimates of variance.  The resampling procedure varied slightly for each set
type, depending upon the particular areal stratification chosen for the model parameters.
Whennoarealstratificationwasappropriate,datawereresampledacrossall areas.When
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arealstratificationwasimportant,datawereresampledby areain thesameproportionsas
the original observations.

Specifically, at each iteration the bootstrap procedure either drew ni values from the
total of ni bycatch observations for set type (i), or drew ni,j values from the total of ni,j
observations for set type (i) in area (j) (see Table 1).  From each replicate sample, a
bootstrapvalue,~y* , wascomputedusingoneof Equations[6], [7], or [8], asappropriate,
and then applying Equation [5] if required.  For example, in the case of complete areal
stratification of the model parameters, the sample mean in area (j) for each replicate
sample is, from [6],

~y j* = Σ
k

y j , k*/  n j [6*]

where* indicatesabootstrapselection.Wethenuse[5] to computethebootstrapreplicate
value as the weighted average of the area-specific sample means,

~y* = Σ
j
[ N j

~y j* ]  / Σ
j

N j [5*]

where Nj is total number of sets in area (j) (including sets without bycatch information
recorded).  Finally, the bootstrap variance for the estimate of mean bycatch per set is
simply the sample variance of the (B) bootstrap replicates, i.e.,

var(
^
E[Y])  = [Σ

b
(~yb* - (Σ

b

~yb* ) /B) 2]  /  (B-1) [9]

This procedure was repeated for each of the three set types.

4.  Results.

4.1  Modelling bycatch per set.

Variations in data characteristics led to different models for the three different set
types.  Specifically, we selected different levels of areal stratification in the parameter
estimatesbasedontheresultsof likelihoodratio tests.Geographicareawasastatistically
significant predictor of bycatch per set for only two of the three set types (log and
schoolfish sets).

Positive bycatch from dolphin sets occurred so infrequently that separate models for
each geographic area were not statistically tenable.  Geographic area, when included as a
covariate,failedto produceasignificantimprovementin thefit, andsofor thissettype,we
selected the model with no areal dependence for any of the parameters.  Thus, the
estimates for each of the three parameters (p), (a), and (µ) in this case are fishery-wide
values (Table 2).  The standard error of the mixing parameter (p) for the dolphin model is
very small, reflecting the high mixing probability dictated by the extremely large number
of zero observations of bycatch.  The standard errors of the parameters for the negative
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binomial portion of the probability distribution ((a) and (µ)) are quite large, reflecting the
few positive(19 out of 2110 sets, Table 1) data available for their determination (see
Discussion).

At the other extreme, positive bycatch observations were frequent enough for log sets
that completely separate, statistically independent models could be developed for
geographic areas 1 and 3.  In this case, the estimated probability distributions effectively
collapsed to an unmodified negative binomial in both areas.  Specifically, the numerical
optimization failed to converge to a positive value for (p), producing a maximum
likelihoodestimateof zerofor (p) in bothareas(Table2). Usingfishingareaasacovariate
for both the mean (u) and the shape (a) parameters improved the fit significantly (p-value
lessthan0.001)oversimplermodelspoolingacrossareas.Becausepositiveobservations
were so abundant, estimated standard errors for the mean and shape parameters (Table 2)
were quite small (see Discussion).

Bycatch from schoolfish sets presented an intermediate case, in which we selected a
model which included marginally different maximum likelihood estimates for the mixing
probability (p) in areas 1 and 3, but no geographic stratification for the other two
parameters, (a) and (µ) (Table 2).  There were considerably fewer (80) positive
observationsfor schoolfishsetsthanfor logfishsets,makingpreciseparameterestimation
muchlesslikely. Likelihoodratio testsindicatedthatfishingareashouldbeincludedasa
covariate for either the shape parameter (a) or the mixing probability (p).  The
approximate p-value for adding areal dependence to the shape parameter was 0.04, while
that for the mixing probability was 0.12.  These two parameters are similar in the effect
they have on the estimated distribution.  Increasing either one increases the probability of
a zero observation, although increasing (a) also increases the probability of a large
observation.  Including areal dependence for both parameters simultaneously, or for the
mean,did notsignificantlyimprovethefit. Wechoseto includearealdependenceonly for
the mixing probability for two reasons.  First, the small number of positive observations
for schoolfishsetslimits theprecisionof theshapeestimate(seeDiscussion).Second,the
difference in the estimated shape between areas was largely due to two unusually large
observationsin area3. Without thesetwo observations,thedifferencein estimatedshapes
was reduced, and the significance levels of the two different models were nearly equal
(approximate p-values of 0.09).  As was the case for dolphin sets, the predominance of
zeros in the schoolfish bycatch data set led to small estimated standard errors for the
mixing probability (p) but to large estimated standard errors for the mean and shape
parameters.

The estimates for the mixing probability parameter (p) for the three set types imply
that essentially all dolphin sets (98%) involve no bycatch at all, while log sets always
involvesomebycatch,althoughfrequentlyin smallamounts.Thisconclusionis basedon
the interpretation of zeros derived from the two components of the probability model
which we fit (see Discussion for more implications of this interpretation).  Observer
experience1 indicates that this result is consistent with observed patterns for dolphin and
log sets.
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The estimated shape parameters varied widely for the three set types (Table 2).
However, because of the large standard error estimates for the schoolfish and dolphin
shape parameters, it is not possible to make any strong statements regarding shape as a
function of set type from these data.  As mentioned above, the estimated shape parameter
for schoolfish sets was strongly affected by the presence of two unusually large
observations(100and125tonsof bycatch)in area3. Repeatingtheanalysiswithout these
two observationsledto ashapeestimateof 3.75(s.e.= 2.10),moresimilar to thosefor log
sets.

TABLE 2.  Maximum lik elihood parameter estimates for the negative binomial
with added zeros fit to tuna bycatch data from the U.S. tuna purse-seine fleet
fishing in the eastern tr opical Pacific Ocean,1989-1992.Seetext for a description
of the parameters and geographic areas.  Estimates of standard error appear in
parentheses.

4.2  Estimating mean bycatch per set.

Since the model we fit for log set bycatch reduced to a simple negative binomial
distribution(with p̂ = 0), theestimatesof meanbycatchperlog setin eachfishingareaare
just the corresponding mean parameters(µj).  Mean bycatch per schoolfish or dolphin set
was estimated using Equation [4].

Estimates of mean bycatch per log set were an order of magnitude larger than for
schoolfishsetsandtwo ordersof magnitudehigherthanfor dolphinsets(Figure8). Most
of this difference is due to the wide range in the estimated proportion of sets with zero
bycatch.  By comparison (Table 2), estimated mean parameters for the negative binomial
component of the model differ by less than a factor of five.  Thus, the model that we fit
indicates that on average, there is a considerable difference among set types in per-set
bycatch, although for sets in which bycatch actually occurs, there is comparatively less
difference in the amount.

Meanbycatchfor log setswasestimatedat10.5tonspersetpooledoverareas,ranging
from 7.1 tons per set in area 1 to more than double that value (15.4 tons per set) in area 3
(Figure 8).  Mean bycatch for schoolfish sets was estimated at 1.16 tons per set pooled
over areas, ranging from 1.57 tons in area 1 to 0.97 tons in area 3.  Mean bycatch per set
for dolphin sets was estimated at 0.06 tons per set fishery-wide.  Implications of these
results for the fishery are discussed in another study (Edwards and Perkins, in prep.).

1.  personal communication, Al Jackson, SWFSC

Dolphin Sets Log Sets Schoolfish Sets

Ar ea 1 Ar ea 3 Ar ea 1 Ar ea 3

p .982 (.015) 0 (0) 0 (0) .715 (.182) .825 (.111)

a 3.87 (5.36) 2.34 (0.19) 3.93 (0.25) 7.20 (6.28)

µ 3.53 (3.21) 15.4 (1.3) 7.09 (0.55) 5.53 (3.60)
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The coefficients of variation (c.v.’s) for the estimates of mean bycatch per schoolfish
and dolphin sets (21% and 33%, respectively) are dramatically smaller than those for the
individualparameterestimatesof (a)and(µ) (Figure9). This is becauseestimatingmean
bycatch per set (i.e., (1-p)µ) is a more robust procedure than estimating the individual
parameters; see Discussion for a full description.  In the case of log sets, the c.v.’s for the
estimatesof E[Y] and(µ) differ (Figure9), eventhoughin thiscase,themodelreducedto
a negative binomial distribution where E[Y] =µ.  The c.v.’s differ because, in estimating
variances for the individual parameter estimates, we used analytic approximations, while
in estimatingvariancesfor meanbycatch,weusedbootstrapmethods(seeMethods).For
a more detailed description of the differences, see Discussion.

Note that the fishery-wide estimates for log and schoolfish sets are not simply the
average of the estimates in each fishing area.  This is because the number of sets in each
area for which bycatch was recorded was not proportional to the actual number of sets
madein thatarea.This imbalancewasanimportantreasonfor includinggeographicarea
in the analysis.  Non-proportional sampling was not a factor for dolphin sets, as the
estimated bycatch in that case was the same for all fishing areas.

5.  Discussion.

5.1  Estimating model parameters and mean bycatch.

 It can be shown from the likelihood equations for the negative binomial with added
zeros that estimates for the parameters (a) and (µ) depend solely on the positive
observationsin thedata. Theestimatefor theparameter(p) dependsonall thedata,but is
strongly dependent on the proportion of zero observations.  Thus, the precision of the
estimates for (a) and (µ) can be very poor if the data contain few positive observations,
while theprecisionof theestimatefor (p) maystill beverygood. Thiswasthecasein our
model parameter estimates for dolphin sets, and, to a slightly lesser degree, schoolfish
sets.  This same observation also applies to the estimate of mean bycatch per set, (1-p)µ.
The estimate of this product is more robust than estimates of the individual parameters
involved in it, because it does not depend solely on either the positive observations or the
proportion of zeros.

5.2  Estimating variances for model parameter estimates.

The analytic approximation formulæ that we used to estimate the variance of the
individual parameter estimates are based on the asymptotic normality of maximum
likelihood estimates.  Specifically, for each set type, we derived the expected Fisher
information matrix as a function of the model parameters (p), (a), and (µ), and then
calculated the inverse of this matrix evaluated at the MLEs of those parameters. We then
took the diagonal elements of this inverse matrix as estimates of the variances of the
parameter estimates.  Since this method uses the MLEs for (p), (a), and (µ) (rather than
using their unknown “true” values) in the information matrix, it suffers from the well-
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known (e.g., Efron, 1992) but unavoidable tendency for ML estimates of variance to be
biased downwards.  We did not attempt to “bias correct” these variance estimates.

 In addition to the analytic formulæ described above, we attempted to use bootstrap
methods to estimate variances for the model parameters (p), (a), and (µ).  Bootstrapping
can be more robust in that it does not require any assumptions beyond the sample being
representative of the underlying process.  However, we could not use the method
effectively for dolphinsetsbecausethereweresofew setsobservedwith positivebycatch
recorded(19outof 2110setsfor whichbycatchwasrecorded;Table1). In resamplingfor
the bootstrap, approximately one third of the samples contained too few positive
observations for the maximum likelihood algorithm to converge.  However, results from
bootstrapping can be used to shed light on the validity of the normal approximation
implicit in the standard errors which we report.

Histograms of dolphin set parameter estimates for the bootstrap samples that did
converge were very skewed (Figure 10).  By implication, the normal-approximation
variance estimates for the dolphin data, while convenient, are probably not very
satisfactory.  For schoolfish data, bootstrap estimates of standard error were consistently
higher than the analytic approximations, indicating that the latter may be optimistic.
Histograms of the bootstrap replicate parameter estimates in this case were slightly
skewed, due to a small number of unusually large observations.  For log sets, bootstrap
standard errors were very similar to those from the analytic approximations, and the
correspondinghistogramswerecloseto normality. Theanalyticestimatesin thiscaseare
probably appropriate.

One alternative to bootstrapping in this case might be the use of likelihood intervals.
This method provides an analytic means of estimating the precision of parameter
estimates when the assumptions required for the information matrix approach are
questionable.  These intervals do not assume normality of the MLEs, and are not
necessarily symmetric about the estimates.  However, for large numbers of parameters,
calculating likelihood intervals can be computationally difficult.

5.3  Estimating variances for mean bycatch per set estimates.

In an attempt to derive analytic formulæ for the variance of our estimates of E[Y], we
manipulated the likelihood equations for the negative binomial with added zeros and
found simplified forms for the MLE of E[Y].  In some cases, the simplified form reduces
to thesamplemean,Equation[6], andthevarianceof thatestimatoris simply(suppressing
area and set type subscripts for simplicity)

var(
^
E[Y])  = (1/n)E[Y] = (1/n)(µ+aµ2) , [10]

which can be estimated by substituting in MLEs for (a) and (µ).  More simply, using the
factthattheestimatoris just thesamplemean,theminimumvarianceunbiasedestimateof
[10] is the sample variance,
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var(
^
E[Y])  = [Σ

i
(y i  -

_
y) 2]  /  (n-1), [11]

where
_
y is thesamplemean. In othercases,thesimplifiedformsfor theMLE of E[Y] are

slightly more complex (Equations [7] and [8]), and Equations [10] and [11] no longer
apply. It is possibleto deriveexpressions,analogousto Equation[10], for thevarianceof
Equations [7] and [8] in terms of the three model parameters (p), (a), and (µ).  However,
theseformulæaresocomplex asto beof nopracticalusein estimation,andnoexpression
analogous to Equation [11] seems possible.

Thus, for consistency, we used bootstrap methods in all cases.  However, when
possible (i.e., log and dolphin sets), we also estimated variances using Equation [11], and
found that the two sets of results agreed to within about 5%.  Likelihood intervals may
also be feasible for estimating precision in this case.

We did not encounter the problem discussed in Section 5.2 (i.e., too few positive
observations in the case of dolphin sets) when bootstrapping variance estimates of mean
bycatchperset. As discussedin Section5.1,estimatesfor meanbycatchperset(1-p)µ do
not depend solely on positive observations.

5.4  Rounding errors in the observations.

Themodelusedin thisstudy, thenegativebinomialwith addedzeros,is comprisedof
two probabilistic components.  As noted in Section 3.1, zero values derived from the
negative binomial component can be interpreted as observations of small amounts of
discard, rounded down to zero, while zero values from the probability mass component
can be interpreted as exact zeros.  This interpretation is based on the assumption of an
underlying continuous distribution for positive discard amounts (e.g., a gamma
distribution), upon which rounding errors have been superimposed.

Oneconsequenceof this interpretationis thatthemeanamountof bycatchthatshould
be associated with “perfect” zeros is zero tons, while the mean amount that should be
associated with “negative binomial” zeros is nonzero.  Thus, strict adherence to this
interpretation of zeros leads to the conclusion that Equation [4] may be an underestimate
of E[Y].  However, if we assume a strictly decreasing underlying distribution for positive
bycatch, symmetric rounding of amounts larger than one half ton would tend to increase
theestimate.In theabsenceof aspecificmodelfor theroundingerrors,wedid notattempt
to correct for any bias due to rounding.

5.5  An alternative algorithm for maximizing the likelihood.

To maximize the likelihood for the individual model parameters (p), (a), and (µ), we
used a quasi-Newton maximization algorithm.  An alternative method available for
mixture models (e.g., McLachlan and Basford, 1988; Lambert, 1992) uses the EM
algorithmto maximizethelikelihood. Thismethodis generallyapplicableto distributions
with added zeros.  In situations with many covariates for the mixing probability (p) and
conditional mean (µ) parameters, it provides an alternative to the high-dimensional
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gradient search required by standard numerical optimization algorithms.  The algorithm
can be implemented using standard regression techniques for generalized linear models.

We applied the EM algorithm to the negative binomial with added zeros, using a
combination of logistic regression to maximize likelihood for (p) and a quasi-likelihood
negative binomial regression for (a) and (µ) (Lawless, 1977).  This algorithm assumes a
constantshapeparameter(a),althoughit mayalsobepossibleto modify themethodwhen
(a) depends on one or more categorical or continuous covariates.  However, this approach
was not successful for the current data set because the logistic regression for the mixing
probability failed to converge, since, in the case of log sets, the ML estimate for (p) was
zero.

5.6  Alternative models considered.

 For this analysis, we used the negative binomial with added zeros to model per-set
bycatch.Weconsideredbut rejectedtwo alternativemodels:the∆-distribution (amixture
of aprobabilitymassatzerowith alognormal(Aitchison,1955;Pennington,1983)),anda
gamma distribution mixed with a probability mass at zero (Coe and Stern, 1982).  Both
modelshavebeenusedin similarcaseswherethedatato beanalyzedhavecontainedlarge
numbers of zeros.  We rejected these models for this study because both were unsuited to
ourdata. The∆-distributionassumesthatthenaturallogsof thepositiveobservationsare
distributed normally, or can be so transformed, and this assumption was not plausible.
The data in this analysis were rounded to the nearest ton and the mode of the positive
observations was at one ton.  Thus, no transformation could bring these data to even
approximate normality.  The gamma mixture model was not appropriate for the current
data because maximum likelihood estimation for a highly skewed gamma distribution
dependsheavily uponsmall(nearzero)observations. In thisstudy, all observationsin that
region were rounded to either zero or one, implying a large relative measurement error,
and therefore potentially poor accuracy.  Another more fundamental reason why we
rejected these two models was that both models mix a continuous distribution on the
positivenumberswith aprobabilitymassatzero,andassumethatobservationsfrom each
componentremaindistinguishable.In thecurrentdataset,smallpositiveobservationsare
grouped together with zero observations, and using a negative binomial in the mixture
allows the model to distinguish between “true zeros” (actual absence of bycatch) and
“rounded zeros” (bycatch so small that it was ignored or missed).

5.7  Conclusions.

The methods developed here were used to model fisheries bycatch data which were
rounded to integer values and which included widely varying numbers of zero
observations, depending on one or more covariates.  The usual models for integer-valued
data, e.g. the Poisson distribution, did not fit the current data at all well because of the
extreme skewness of some of the observed distributions.  The negative binomial with
added zeros is more flexible than the standard models, and provided a much better fit to
the current data.
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Modelling thesedatawith aparametricprobabilitydistributionallowedusto describe
patterns in the bycatch in some detail, for example, estimating the percentage of “true
zeros”vs.“roundedzeros”. In contrast,computingnon-parametricestimatesof meanand
variance would not give any indication of the patterns in the individual observations.
While averageor totalbycatchis of significantinterest,it is alsoimportantto quantifythe
amount of bycatch possible for an individual set.  Assuming that the parametric model is
acceptedasappropriate,onecanestimate,for example,whattheprobabilityis that,dueto
random chance alone, bycatch from a particular boat will exceed a certain limit in a fixed
number of sets.

Modelling thedatain a regressionframework allowedusto testfor dependenceof the
model parameters upon the covariates.  In turn, dependencies of the model parameters
were transformed into statements about the mean bycatch per set as a function of set type
andgeographicarea. In particular, wewereableto incorporatearealdependenceinto our
estimates of mean bycatch per set only when appropriate.  Additionally, we were able to
distinguishwhetherdifferencesin meanbycatchweredueto differencesin theproportion
of zero observations, or due to differences in the distribution of positive observations.

In this report we modelled data from observations of fisheries bycatch, however the
modelis moregenerallyapplicableto integer-valueddatawhichexhibit a largeproportion
of zero observations combined with long positive tails.  Both categorical or continuous
covariates may be incorporated into the model.
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FIGURE 1.  School set discards in area 1.  Bars indicate observed frequencies, lines
indicate fitted frequencies.
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FIGURE 2. Schoolsetdiscardsin area3. Two observations larger than 100tonsnot
shown.  Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 3.  Dolphin set discards in all areas.  Bars indicate observed frequencies,
lines indicate fitted frequencies.
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FIGURE 4.  Log set discards in area 1.  Ten observations larger than 100 tons not
shown.  Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 5.  Log set discards in area 3.  Three observations larger than 100 tons not
shown.  Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 6.  Geographic strata used in developing models to estimate mean bycatch
per setfor the U.S.tuna purse-seinefleetfishing in the eastern tr opical Pacific Ocean,
1989-1992 (Federal Register, 1989).
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FIGURE 7.  (Lack of) relationship between tons of tuna bycatch and tons of tuna
loadedfor the U.S.tuna purse-seinefleetfishing in the eastern tr opical Pacific Ocean,
1989-1992.
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FIGURE 8.  Estimated mean tuna bycatch per set for the U.S. tuna purse-seine fleet
fishing in the eastern tr opical Pacific Ocean,1989-1992.Geographicareasasdefined
in Federal Register (1989).  Pooled estimates are fishery-wide, across all areas.
Standard errors indicated by error bars.
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FIGURE 9.  Coefficients of variation for estimates of the model parameters (p), (a),
and (µ), and for estimates of mean bycatch per set for the U.S. tuna purse-seine fleet
fishing in the eastern tr opical Pacific Ocean,1989-1992.Geographicareasasdefined
in Federal Register (1989).  Pooled estimates are fishery-wide, across all areas.
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FIGURE 10.  Sample histograms of 1000 bootstrap replicates of estimates of the
negative binomial parameter (µ), for dolphin, schoolfish, and log sets.  See text for a
description of the parameter.
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