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Abstract.

Studies of fisheries bycatch often result in data that are characterized by a smooth
distribution of positve amountof persetbycatch but with anextremelylarge numberof
zeroobsenations. Thisdiscontinuityat zerois difficult to fit with a standardlistribution.

One approach is to model pszt bycatch with a mixture of twdistritutions, with one
componentepresentinghe zeroobsenationsandthe otherrepresentinghe obserations

of positive bycatch. In this report,we describesucha mixture modelthatis suitablewhen

the bycatch obseations hae been rounded to irger amounts. In particulavhen

“rounded” zeros (representing small amounts of bycatch) and “true” zeros (representing
no bycatch) are indistinguishable in the data, the mixture model can be used to estimate
the proportion of each.

We fit this model to tuna bycatch data collected by oless@board the U.S. tuna
purse-seinéleetin theeasternropical Pacific Ocearduringtheyears1989-1992.We use
themodelto estimatebycatchperset,andallow themodelparameterso dependuponone
or more cwoariates. W then she how to estimate mean bycatch per set fishery-wide, by
summing out ver those ceariates. Extensions and limitations are discussed.

1. Introduction.

Many fisheries catch, in addition to thedat species, unanted lot unasoidable
individuals of othernon-taget, species. This “bycatch” of uanted indviduals is
generally discarded, and in nyairsheries, fe, if any, individuals surwe their capture
anddiscard. Estimatingthe extentof suchbycatchis becomingncreasinglyimportantas
fisherieamanagersnoreoftenhave to contendwith situationsvhereunwantedindividuals
from a fishery include indiduals which are desirable in other cottise Bycatch in one
fisherymayincludejuvenile memberof thetargetspeciesn the sameor anotherfishery
or individuals from threatened, endangered or protected spemesxample, juenile
maclerel are caught and discarded, and sea turtles caught anwtedrdoy shrimp
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trawlers in the Gulf of Mgico (e.g., Collins and ¥hner 1988; Caillouet et al., 1991).
Sharks, billfish, and jlenile tuna are caught by tuna purse-seiners in the eastern tropical
Pacific Ocean (e.g., Au, 1991). Numerous tropical fish species are caught by shrimp
trawlers around islands in the soutadiic Ocean (e.g., Wbicki and Wantiez, 1990).

Various prohibited species are captured as bycatch in the Bering Sea donvelstic tra
fisheries (Beger et al., 1989). These are only & f&# the numerous fisheries plagued

with bycatch.

Although of increasing interest, the amount of bycatch generatearioys fisheries
remains relatiely unstudied. Bycatch is generally discarded without being weighed or
measuredactly; few fisheries routinely estimate or measure bycatch yrf@m.

Because complete data are most often lacking, bycatch usually must be estimated rather
thanreporteddirectly (e.g.,Bergeretal., 1989). Oneparticularlytroublesomegoroblemin
bycatch estimation is gleloping a statistical model that is sciently flexible to account

for a \ariety of data types, so that bycatches can be compared frieneatif

circumstances.

TheU.S.tunapurse-seinésheryin theeasternropical Pacific Ocean(ETP)presents
such a problem,ut, in contrast to manother fisheries, also prioles an opportunity to
developasolutionto the problem,becausénformationon bycatchof tuna(includingboth
non-tagettunaspeciesandjuvenilesof targetspecieshasbeencollectedirom thefishery
since 1988.

A flexible approach is required to model tuna bycatch from this fishery because the
purse-seineassels capture fish using three distinctljedént fishing stratges: “log
fishing”, “school fishing” and “dolphin fishing”. Log fishing is the practice of catching
fish by making purse-seine sets on tuna associated with floating objects. These sets
usually capture schools of small yeifiin tuna Thunnus albacares) or mixed schools of
small yellovfin and like-sized skipjack tund&@tsuwonus pelamis). School fishing is the
practice of capturing schools composed purely of (usually small) tuasn (@gther pure
schools of yella/fin or mixed schools of yellfin and skipjack), located by sade
disturbances created by the schools. Dolphin fishing is the practice of catching tuna
located by sudce disturbances created by closely associated dolphins (e.g., Orbach
1977). Tna associated with dolphins almostays consist of pure schools ofdar
yellowfin. Log fishing generates g amounts of tuna bycatclery frequently (with
almost @ery set). School fishing generates moderate amounts of tuna bycatch much less
often. Dolphin fishing generates small amounts of tuna bycatch, andemyply v
infrequently Thus,tunabycatchdatafrom dolphinfishingarecharacterizetyy mary zero
obsenations, while data from log fishing contain mostly non-zero obsiens. School
fishing presents an intermediate case.

We develop here a method for modelling bycatch per set for these three disparate
typesof bycatchdata,andshov how to usethemodelto estimateneanbycatchpersetfor
eachsettype. Thefocusof thepresenstudyis developmentanddescriptionof the model
asasolutionto acommonproblemin bycatchestimation. Detailedresultsof applyingthe
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model,andits implicationsfor theU.S.tunapurse-seinésheryin the ETPE arethe subject
of another paper (Edavds and Perkins, in preparation).

We first describe the general characteristics of vadadble bycatch data, and then fit
a statistical model to those data tedsticate some of theattors decting the amount of
tuna bycatch per set. adefine an appropriately fible probability distrilution to
describe the obsesd data, then use 8khood methods to select redet covariates and
computeparameteestimatedor thatdistribution. Finally, we usethosevaluesto estimate
meanbycatchperset,bothasafunctionof geographidocationandfishery-wide for each
settype. Thespecificapplicationsandresultspresentedhereaddres®nly tunabycatchin
the ETP purse-seine fisheand do not include bycatch of other species (e.g., marine
mammals, billfish, sharks, sea turtles).weeer, the method presented here is generally
applicable to ansituation ivolving analysis of data sets characterized d&rymg
proportions of zeros.

2. Data.

Although more detailed reportsowld be desirable, currentlyalable data for the
U.S. purse-seine fleet only include set estimates of total tons of tuna discarded. Data
on size-classes and species composition of this discarded tonnage &eglaloieanor
aredataavailableon discard=f specieotherthantuna. Thisreportfocuseson datafrom
the U.S. fleet onlyand does not include direct information about bycatch from the
considerable number of non-U.S. purse-seiners fishing in the ETP

Data were collected by National Marine Fisheries Service (NMFS) orAmerican
Tropical Tuna Commission (IATC) obserers placed aboard U.S. tuna purse-seiners
during routine fishing trips to the eastern tropicdifc Ocean. Each agenprovided
about 50% of the obsesks; agencies alternated sending olesren departing trips.
Obserers recorded time and position of all sets made by @s%els fishing in the ETP
during the 31-month “study period” September 1, 1989 - March 30, 1992. @bserv
coverage vas 100% during this period. Wever, bycatch data werevailable only from
approximatelyhalf of the setrecordsduringthe periodSeptembed, 1989- July 30,1990
because during this period onlyTAC obserers were collecting bycatch data. During
the remaining period (August 1, 1990 - March 30 1992) obsefrom both agencies
recordedbycatchfor all sets. Thebeginningof the“study period”is thefirst time atwhich
both NMFS and IATC records arevailable for analysis (prior to this, TAC data are
considered proprietary). The end of the “study period” corresponds to the most recent
complete data that wereaalable at the time when this studwsvinitiated.

Although it would have been desirable to taklirect measurements of the weight of
thebycatch(tonsof tunadiscardedjor eachindividual set,thiswasnotfeasible. For most
sets, obsemrs estimated the bycatch by counting the number of brailege fiah
baslets) used to empty the net after the set, multiplying this number by an estimated
tonnage per brailer (based on advice from the fishing captain and xypkeeieaced
cravmen), and then multiplying this estimated total weight caught by the estimated
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fraction of non-taget tuna in the catch. Obsers estimated this fraction of nongat
tunaby eye, eitherby estimatinghe compositiorof brailers,or by observingcatchsorting
on deck. Occasionally the majority of the cata@swliscarded before being brailed
aboard. In these cases, obseswestimated discard by first estimating Y& the weight
of the total catch, and then estimating the tonnage loaded by bi#ilerdiference
between these twestimates (i.e., tons caught minus tons loaded)the estimated tons
of bycatch and as assumed to include only discarded tuna.

Obsererestimate®f bycatchtonnagevereapparentlyoundedo integervalueswith
the rounding inter@l increasing with the amount of bycatchor ery small amounts of
bycatchweightswereroundedo theneareston sothatit wasnot possiblein thesesetsto
distinguish obsemtions with no bycatch from those witbry small amounts (less than
onehalfton). Increasinglifficulty with estimatingncreasinglylargetonnage®f bycatch
apparentlycontributedto a systemati¢endeng in thedatatowardsroundingto thenearest
5 or 10tonsfor smallandmediumestimate®f bycatchandto theneares25 or 50tonsfor
the lage estimates (Figures 1-5)orfsets with moderately small amounts of bycatch,
obsenrer estimatesendedo bemoreprecisebecausehe bycatchaswell asthetargetfish
were brailed aboard thessel, then sorted on deck where the bycatch could be easily
comparedo thetotal catch. For setswith largeamountsof bycatch thefish maynothave
been brought on board, making precise estimates mdiatlibnd rounding tendencies
greater

Thevarioussource®f measuremerdrrorandrounding,asdescribedbore,introduce
into our data uncertainty which we did not attempt to accountifiothe absence of data
or studiedor “groundtruthing” obserer estimate®f bycatch,or aplausiblemodelfor the
measurement errors, we treated the bycatch weight estimatescameasurements.

Bycatchwasrecordedor 59%(21100f 3590, Tablel) of obserneddolphinsets,76%
(960 of 1226) of obseed schoolfish sets, and 75% (998 of 1328) of olesklog sets.
These sets generated 134, 1098, and 9819 tons of eddsmatch, respeutly. The
relatively smallbycatchtotalsfor schoolfishanddolphinsetsaredueto thelargenumbers
of setsof thosetwo typeswith zerobycatchrecorded.Positve tunabycatchwasrecorded
in 65% (6500f 998, Tablel) of log setswith bycatchobsered,butin only 8% (80 of 960)
of schoolfish sets and only 0.7% (10 of 2110) of dolphin sets with bycatch etsété
ignored log and school fishing in area 2 in these analyses, because 0 schoolfish sets and
only 10 log sets (4 with estimated bycatch) occurred in this asdde(T). V& also
eliminated from the analyses 7 sets in which the entire catget(i@atch plus bycatch)
was lost due to equipmerdtilure.
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TABLE 1. Effort data (numbers of sets) dr the U.S. tuna purse-seine fleet fishing
in the easten tropical Pacific Ocean, 1989-1992. Geographiceas as defined in
Federal Register (1989). N is the total number of sets in avgh area, n is the
number of sets with bycatch ecorded, and i is the number of sets with positie
bycatch recorded.

Set Type Area N n n
Dolphin 1 2496 1445 10
2 498 272 5
3 596 393 4
Total 3590 2110 19
Schoolf- 1 399 279 32
ish 2 0 0 0
3 867 681 48
Total 1266 960 80
Log 1 537 326 257
2 10 4 4
3 791 672 393
Totat! 1328 998 650

1. Totalsfor log setsdo notincludesetsin geographiarea2.
See tat for description.

3. Methods.

3.1 Modelling bycatch per set.

The primary dificulty in defining a probability distrition to model bycatch per set
was suficient flexibility to describe the disparate disttibns obsered for the three
different set types (Figures 1-5).eWhose a modified gative binomial distriltion,
known as the ngative binomial with added zeros (Johnson amdziK1969), because this
distribution could accommodate the wide range in the proportion of zero abieas/ as
well as the relately heay tails in the obserd distritutions of bycatch for all three set
types (see Discussion foravother models that we considered kejected).

The n@ative binomial distrilition with added zeros is a mixture of aak/e
binomial distritution and a discrete probability mass at zero. Under this model, bycatch
per set is eithen@ctly zero with probability (p) or has agagive binomial distriltion
with probability (1-p). The negative binomialportionof thisdistribution canbeviewedas
representing strictly posie amounts of bycatch, rounded to gee\alues. Thus, zero
values that are part of thegaive binomial can be interpreted as oba@ons of small
amounts of discard, roundedvdoto zero. Zeroalues from the probability mass can be
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interpreted asxact zeros. The probability function for this modifiegjatee binomial
distribution is

la _
P+ (-pEE y =0
Pr{Y =y} = 5 [1]
A1-p 0t/ 1 4% an of
O y'r(1/a) U +apld 0L +apl’ y=12..

whereY is anindividual obsenation (here,anumberof tonsof bycatchpersetfor agiven
set type), (p) is the probability of an obs&rgn coming from the “perfect zero” state,
(1-p) is the probability of anobsenationcomingfrom the negative binomialstate and(j)
and (a) are, respeetly, the mean andaviance parameters of the conditionajatee
binomial.

The parameter (a) determines the shape of the distnib As (a) tends to zero, the
conditional ngative binomial distrilition in the mixture tends to a Poisson disttiin.
As (a) increases, the conditionabatve binomial becomes moreesked, with a heaer
tail andhigherprobabilityof azeroobsenation. The paramete(p) is amixing parameter
which controlstherelative importanceof the negative binomialandthe probabilitymassat
zero. When(p) is one,thedistributionis a probabilitymassat zero. When(p) is zero,the
probabilitydistribution becomestrictly negative binomialandexpectedbycatchpersetis
the mean of the gative binomial, ).

The pected wlue for indvidual obserations (i.e., mean tons bycatch per set in this
study) from this probability distrigion is

ELY] = (1-p)u [2]

while the \ariance of an indidual obserstion is

var[Y] = (1-p)( +(a+pp?). [3]
Geographic area, tons of tuna loaded (i.e., commercial catch), time, @indayonth
wereall factorswhich we consideredisingaspotentialcovariatesn theanalysis. We did
notattemptto accountfor ary long-term(i.e., yearto year)trendin bycatchrates because
our data included tooeyears for such an analysis.

We included geographic area in the analysis becausesimiusidiferences in
amountof bycatchandeffort betweersettypesandfishingareasn thedata. A priori, we
selected as geographic strata the three areas (Figure 6) currently used to determine
comparability of U.S. and non-U.S. dolphin mortality rates (Federgisieg 1989).
These roughly define the major fishing areas in the system. The total numbers of sets
obsered in each area, including sets for which bycatak not recorded, represent the
actual areal distrilttion of fishing efort during the study period. As shio in Table 1,
however, obseration of bycatch w&s not proportional to this true disuiion of total
effort. In theanalysighatfollows, it isimportantto distinguishbetweerthetotalnumbers
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of setsdenotecby N; j, andthenumbersf setsfor which bycatchwasobsered,denoted
by ;. The former define the actual distrilon of fishing efort, while the latter simply
reflect the sample tek. Because our sample of sets with bycatch recordedhot
proportionalto thetotal effort (Tablel), ignoringareain theanalysiscouldleadto biased
estimates if the mean bycatch per sdediffrom area to area for asgn set type.

We attempted to include tons of catch loaded in the analysis because it is information
that might be @ailable from historical data. &did not, haever, find ary statistically
significantrelationshipbetweertonsloadedandbycatchperset(Figure7), andsononeof
the final parameter estimates depend upon tons loaded.

There are some apparent general relationships between time of day or month and
bycatch, ot we rejected them as potentialadates for tw reasons. First, the sampling
was unbalanced, so that some times and months wereepresented and some under
represented. This unbalance resulted from correlations between set type and time of day
(e.g., most log sets occurred early in the day), and between area and month (e.g., most
dolphin sets occurred in area 2 only during July - Septembdth sWth strong
imbalances in the data, estimates of toehts for those c@riates wuld be poar
Secondneithertime of daynormonthwould have contributedto our primaryfocusin this
study i.e., fishery-wide estimates of mean bycatch for each set type. In contrast to area,
oursampleof setsfor which bycatchwasrecordedlid notappeato bebiasedwith respect
to time of day and month. In the absence ofxguligt model for efort as a function of
thosetwo variableswe assumedhatour samplewasrepresentagie with respecto them.

Thus, our estimates of mean bycatalgraged wer time of day and month,auld be the
same whether or not thosevaeoates were included. Also, the ultimate goal of this study
is to predict gerage annual bycatch (Edwds and Perkins, manuscript in prep.), rather
than to model bycatch per set in detail as a function of all possible predictors. Including
such relatrely uninfluential ceariates wuld increase prediction error as thvaitable
information in the data auld have to be allocated among more estimated parameters.

We computed estimates of the parameters ) ahd (a) by fitting the model [1]
separately to data for each of the three set types, using geographic arezasisite cD
determine an appropriate dependence upon area for each of the three model parameters,
we made initial fits for each set type using no areal stratificatianth@h used stepwise
likelihood ratio tests to select or reject more complicated models that included areal
dependence for progregsly larger numbers of model parameters. At each step, we
estimategarametevaluesby maximizingthelik elihoodof theobsereddatafor eachset
type under the modified gative binomial [1], using a quasi-Mg&on numerical
optimization algorithm. & generated all possible models in this procedure and selected
the simplest model that could not be significantly imptbby adding more terms. It
should be noted that because this is not a linear model, significaalse(ie. p-alues)
from these likelihood ratio tests are approximate.

We used analytic formulae to compute standard errors for our estimates of the model
parameters (p), (a), and)( These formulae are based on thgdasample normal
approximatiorfor the maximumlik elihoodestimate®f the parametersFor comparison,
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we also computed bootstrap standard errors; see Discussion for a description of the
differences.

3.2 Estimating mean bycatch per set.

We used Equation [2] and the maximunelikood estimates for (p) and)(from the
best-fitmodelsto estimateneanbycatchpersetfor eachsettype. Whenthefitted models
indicatedsignificantarealdifferencesn parametevalues(i.e., for schoolandlog sets see
Results), we calculated estimates of mean bycatch per set for eattiuialdarea. &
thencalculatedh “pooled” estimateof meanbycatchpersetastheweightedaverageof the
area-specifiestimatesywhereweightingswereproportionalto total effort (numberof sets
including sets for which bycatchas not recorded) in each area. Where no areal
stratification vas appropriate (i.e., for dolphin sets, see Results), we calculated only one
“pooled” estimate from [2] using the Bkhood estimatealues for (p) andu) derved
from the unstratified model.

For example, mean bycatch per set type (i) in area@plad/ be estimated as

é\[Yi,j] = (1'6i,j)ﬁi,j [4]

and the “pooled” estimate for all areas combinedii be estimated as
E[Yilpooled= 2N jE[Yi ;] / 2N | [5]
j j

whereN; ; is thetotal effort (in numberof sets)of type (i) occurringin area(j). Notethat
this“pooled” calculationis basedntheproportionof total sets(includingthosefor which
bycatchwasnotrecordedpbsenedin eacharea. Thisis anestimateof themeanbycatch
per set ger the entire fishery during the study periadt, ib also alid as gredictionof
future bycatch under the assumption that the proportiorfat éfets) in each area
remains constant as the actual number of sates:

While Equation [4] preides a straightforard way to compute the MLE for the
product (1-pj, it does require that separate estimates for (p)@nitt¢t be computed
numerically More importantlythe \ariance of the product of {f) and(ﬁ) can be
difficult to estimateaccurately It is possible however, to usethelik elihoodequationgor
the ngative binomial with added zeros to dexisimplified forms for the MLE of mean
bycatch per set. Specificalignly the product (1-jp) need be estimated, and simple
closed form gpressions that do notvalve the indvidual parameter estimates can be
derived through algebraic manipulation of theelikood equations. By thevariance
properties of maximum l&ihood estimates, these simpler formgegiesults that are
identical to using [4].

With this closed-form approach, one canwhlbat, withno areal stratification, the
MLE for the product (Ip)u is simply the sample mean,
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>

[Y]I =Y = (1/n)%yk, [6]

where the set type subscript (i) is suppressed for claBityilarly, with completeareal
stratification, the MLE for each area reduces to the sample mean in that area, and the
“pooled” estimatas computedusingEquation[5]. In bothof thesecasesthevariancefor

the MLE of (1-pp can be estimatecewy easily using the sampleaviance of the data.

When only the mixing probability (p) depends on area (i.e., for schoolfish sets; see
Results), the MLE for mean bycatch per set in area (j) is slightly more complicated, and
reduces to

E[Y;] = (nj*/n)) Ty, [7]

where rjf’ and nare the number of posié obserations and the total number of
obsenrations in area (j),y are the positie obserations in all areas, and iis the total
number of positie obserations in all areas. Similarlywhen only the rgative binomial
mean [1) depends on area, the MLE for mean bycatch per set in area (j) reduces to

E[Y] = (n*/n) ZYiuIny" [8]

where i and n are the number of positiobserations and the total number of
obsenations in all areas,j,}(+ are the positie obserations in area (j), ano]*nis the total
number of positie obserations in area (j). Agn, [5] is used to compute “pooled”
estimates in these latteraveases. Note that the estimates here fégréifiit areas are not
independent, since both formulae [7] and [&pire obserations from all areas. In
particular the first term in [7] is an area-specific estimate of the probability of ayeositi
obsenation, while the second term is a “pooled” estimate of the mean forveositi
obsenations. This is consistent with the areal stratification on which [7] is based, and
providesmorepreciseestimate®f E[Y] thansimply takingthesamplemeanin eacharea.

A similar obseration may also be made about [8].

While variance estimates for [6] are easy to obtain, there is no simple analytic result
for estimating the ariance of [7] or [8] (see Discussion for details).weeer, although
analyticmethodscouldnotbeappliedeffectively for all threesettypes,bootstrapnethods
can be easily applied in all cases using theipus formulae for the simplified MLEs of
mean bycatch per set. Thus, we used bootstrap methods rather than analytic methods to
estimate ariances for our estimates of mean bycatch per set.

Bootstrap ariance estimates of the estimated mean bycatches per set were computed
by repeatedly (B = 1000 times) sampling with replacement from the elolséata,
computing bootstrap replicatalues of the appropriate estimators, and calculating
empirical estimates ofaviance. The resampling proceduagied slightly for each set
type, depending upon the particular areal stratification chosen for the model parameters.
Whenno arealstratificationwasappropriatedatawereresampledcrossll areas.When
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arealstratificationwasimportant,datawereresampledy areain the sameproportionsas
the original obsemtions.

Specifically at each iteration the bootstrap procedure eithev drgalues from the
total of n bycatch obsentions for set type (i), or dren;; values from the total ofip
obsenations for set type (i) in area (j) (seable 1). From each replicate sample, a
bootstrapvalue, y* , wascomputedusingoneof Equationg6], [7], or [8], asappropriate,
and then applying Equation [5] if requiredorfexample, in the case of complete areal
stratification of the model parameters, the sample mean in area (j) for each replicate
sample is, from [6],

yit = %yj,k*/ n; [6%]

where* indicatesabootstrapselection.Wethenuse[5] to computethebootstrapeplicate
value as the weighted@rage of the area-specific sample means,

v* = 2[N; y*] 1 ZN; [5*]
j j

where N is total number of sets in area (j) (including sets without bycatch information
recorded). Finallythe bootstrapariance for the estimate of mean bycatch per set is
simply the sampleariance of the (B) bootstrap replicates, i.e.,

var€ry]) = (2 - (Z55)/8)7] 1 (8-1) 9]

This procedure as repeated for each of the three set types.

4. Results.

4.1 Modelling bycatch per set.

Variations in data characteristics led tdetiént models for the three fiifent set
types. Specificallywe selected dérent levels of areal stratification in the parameter
estimatedbasedntheresultsof likelihoodratio tests. Geographi@areawasa statistically
significant predictor of bycatch per set for onlytaf the three set types (log and
schoolfish sets).

Positve bycatch from dolphin sets occurred so infrequently that separate models for
each geographic area were not statistically tenable. Geographic area, when included as a
covariate failedto producea significantimprovementn thefit, andsofor this settype,we
selected the model with no areal dependence fpoathe parameters. Thus, the
estimates for each of the three parameters (p), (a)uml this case are fishery-wide
values (Bble 2). The standard error of the mixing parameter (p) for the dolphin model is
very small, reflecting the high mixing probability dictated by tkteeenely lage number
of zero obserations of bycatch. The standard errors of the parameters forgaivae
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binomial portion of the probability distrifbion ((a) and|f)) are quite lage, reflecting the
few positive(19 out of 2110 setsalble 1) dataailable for their determination (see
Discussion).

At the other gtreme, positie bycatch obseations were frequent enough for log sets
that completely separate, statistically independent models couldélepkd for
geographic areas 1 and 3. In this case, the estimated probabilityutistisbefectively
collapsed to an unmodified gegive binomial in both areas. Specificaliye numerical
optimization &iled to comerge to a positie value for (p), producing a maximum
likelihoodestimateof zerofor (p) in bothareaqTable2). Usingfishingareaasacovariate
for both the mean (u) and the shape (a) parametersvatptbe fit significantly (p-alue
lessthan0.001)over simplermodelspoolingacrossareas.Becausgositve obsenations
were so abndant, estimated standard errors for the mean and shape paranadtier@)T
were quite small (see Discussion).

Bycatch from schoolfish sets presented an intermediate case, in which we selected a
model which included mgmally different maximum liklihood estimates for the mixing
probability (p) in areas 1 and Qttmo geographic stratification for the otheotw
parameters, (a) and) (Table 2). There were considerablyér (80) positre
obsenationsfor schoolfishsetsthanfor logfishsetsmakingprecisegparameteestimation
muchlesslikely. Likelihoodratio testsindicatedthatfishingareashouldbeincludedasa
covariate for either the shape parameter (a) or the mixing probability (p). The
approximate p-alue for adding areal dependence to the shape paranast€.04, while
that for the mixing probability as 0.12. These twparameters are similar in théeet
they have on the estimated distubon. Increasing either one increases the probability of
a zero obseation, although increasing (a) also increases the probability aje lar
obseration. Including areal dependence for both parameters simultanemuslythe
meandid notsignificantlyimprove thefit. We choseto includearealdependencenly for
the mixing probability for tw reasons. First, the small number of pesibbserations
for schoolfishsetslimits the precisionof the shapeestimatgseeDiscussion).Secondthe
difference in the estimated shape between araadagely due to tw unusually lage
obsenationsin area3. Withoutthesetwo obsenations,thedifferencan estimatedshapes
was reduced, and the significanceels of the tw different models were nearly equal
(approximate p-alues of 0.09). As as the case for dolphin sets, the predominance of
zeros in the schoolfish bycatch data set led to small estimated standard errors for the
mixing probability (p) lot to lage estimated standard errors for the mean and shape
parameters.

The estimates for the mixing probability parameter (p) for the three set types imply
that essentially all dolphin sets (98%yYaihve no bycatch at all, while log setsvalys
involve somebycatch althoughfrequentlyin smallamounts.This conclusionis basedn
the interpretation of zeros deed from the tww components of the probability model
which we fit (see Discussion for more implications of this interpretation). Gdyserv
experiencé indicates that this result is consistent with obsematterns for dolphin and
log sets.
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The estimated shape parametexrsad widely for the three set typesble 2).
However, because of the Ige standard error estimates for the schoolfish and dolphin
shape parameters, it is not possible toerey strong statementsgarding shape as a
function of set type from these data. As mentioned@lbe estimated shape parameter
for schoolfish sets &s strongly décted by the presence ofdwnusually lage
obsenations(100and125tonsof bycatch)in area3. Repeatingheanalysiswithoutthese
two obsenationsledto ashapesstimateof 3.75(s.e.= 2.10),moresimilarto thosefor log
sets.

TABLE 2. Maximum lik elihood parameter estimatesdr the negatve binomial
with added zeros fit to tuna bycatch data fom the US. tuna purse-seine fleet
fishing in the easten tr opical Pacific Ocean,1989-1992.Seetext for a description
of the parameters and geographic aas. Estimates of standard eor appear in
parentheses.

Dolphin Sets Log Sets Schoolfish Sets
Areal Area 3 Areal Area 3
p .982 (.015) 0 (0) 0 (0) 715 (.182) .825 (.111)
3.87 (5.36) 2.34 (0.19) 3.93(0.25) 7.20 (6.28)
3.53(3.21) 15.4 (1.3) 7.09 (0.55) 5.53 (3.60)

4.2 Estimating mean bycatch per set.

Since the model we fit for log set bycatch reduced to a simg&ivee binomial
distribution (with p = 0), theestimate®f meanbycatchperlog setin eachfishingareaare
just the corresponding mean paramefgys Mean bycatch per schoolfish or dolphin set
was estimated using Equation [4].

Estimates of mean bycatch per log set were an order of magnitgdettaan for
schoolfishsetsandtwo ordersof magnitudehigherthanfor dolphinsets(Figure8). Most
of this difference is due to the wide range in the estimated proportion of sets with zero
bycatch. By comparison &ble 2), estimated mean parameters for tigative binomial
component of the model ¢ by less than attor of fre. Thus, the model that we fit
indicates that onv@rage, there is a considerabldatiénce among set types in {set
bycatch, although for sets in which bycatch actually occurs, there is comglgirkess
difference in the amount.

Meanbycatchfor log setswasestimatedat 10.5tonspersetpooledoverareasranging
from 7.1 tons per set in area 1 to more than double #ha¢ ¥15.4 tons per set) in area 3
(Figure 8). Mean bycatch for schoolfish se&swstimated at 1.16 tons per set pooled
over areas, ranging from 1.57 tons in area 1 to 0.97 tons in area 3. Mean bycatch per set
for dolphin sets was estimated at 0.06 tons per set fishery-wide. Implications of these
results for the fishery are discussed in another studydkidvwand Perkins, in prep.).

1. personal communication, Al Jackson, SWFSC

A mixture model for estimating bycatch from data with snaero obserations March 24, 1999 12



The coeficients of \ariation (c.vs) for the estimates of mean bycatch per schoolfish
and dolphin sets (21% and 33%, respedyi) are dramatically smaller than those for the
individual parameteestimate®f (a) and(u) (Figure9). Thisis because@stimatingnean
bycatch per set (i.e., (1j1) is a more robst procedure than estimating the widiial
parameters; see Discussion for a full description. In the case of log sets, sHerche
estimate®f E[Y] and(p) differ (Figure9), eventhoughin this casethe modelreducedo
a ngative binomial distrilmtion where E[Y] 1. The c.vs differ because, in estimating
variances for the indidual parameter estimates, we used analytic approximations, while
in estimatingvariancedgor meanbycatch we usedbootstrapmethodgseeMethods). For
a more detailed description of thefdrences, see Discussion.

Note that the fishery-wide estimates for log and schoolfish sets are not simply the
average of the estimates in each fishing area. This is because the number of sets in each
area for which bycatchas recorded @as not proportional to the actual number of sets
madein thatarea. Thisimbalancevasanimportantreasorfor includinggeographiarea
in the analysis. Non-proportional samplingsanot adctor for dolphin sets, as the
estimated bycatch in that casasithe same for all fishing areas.

5. Discussion.

5.1 Estimating model parameters and mean bycatch.

It can be shwn from the lilelihood equations for the gative binomial with added
zeros that estimates for the parameters (a) |@ndepend solely on the posi
obsenationsin thedata. Theestimateor the paramete(p) depend®nall thedata,but is
strongly dependent on the proportion of zero oleg@ns. Thus, the precision of the
estimates for (a) anght) can be ery poor if the data containiepositive obserations,
while the precisionof theestimateor (p) maystill bevery good. Thiswasthecasean our
model parameter estimates for dolphin sets, and, to a slightly legsee gechoolfish
sets. This same obsation also applies to the estimate of mean bycatch per sety.(1-p)
The estimate of this product is more uebthan estimates of the imdiual parameters
involved in it, because it does not depend solely on either thevpositserations or the
proportion of zeros.

5.2 Estimating \ariances br model parameter estimates.

The analytic approximation formulae that we used to estimateati@nee of the
individual parameter estimates are based on the asymptotic normality of maximum
likelihood estimates. Specificglfpr each set type, we deed the gpected Fisher
information matrix as a function of the model parameters (p), (a)andn(d then
calculated the werse of this matrixwaluated at the MLEs of those parameters.tidén
took the diagonal elements of thizénse matrix as estimates of treiances of the
parameter estimates. Since this method uses the MLEs for (p), (a)) &rath{er than
using their unknan “true” values) in the information matrix, it $afs from the well-
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known (e.g., Efron, 1992)ui unavoidable tendencfor ML estimates of ariance to be
biased devnwards. V¢ did not attempt to “bias correct” thesgignce estimates.

In addition to the analytic formulae describedahave attempted to use bootstrap
methods to estimateaviances for the model parameters (p), (a), ahd Bootstrapping
can be more ralst in that it does not requireyaassumptions ly@nd the sample being
representate of the underlying process. Wever, we could not use the method
effectively for dolphinsetsbecauseéhereweresofew setsobseredwith positve bycatch
recorded19 outof 2110setsfor which bycatchwasrecordedTablel). In resamplingor
the bootstrap, approximately one third of the samples containediquoitive
obsenations for the maximum I&ihood algorithm to corerge. Havever, results from
bootstrapping can be used to shed light on #ieity of the normal approximation
implicit in the standard errors which we report.

Histograms of dolphin set parameter estimates for the bootstrap samples that did
converge were ery slewed (Figure 10). By implication, the normal-approximation
variance estimates for the dolphin data, whileveorent, are probably noewy
satishctory For schoolfish data, bootstrap estimates of standard error were consistently
higher than the analytic approximations, indicating that the latter may be optimistic.
Histograms of the bootstrap replicate parameter estimates in this case were slightly
skewed, due to a small number of unusuallgéaobserations. Br log sets, bootstrap
standard errors wereeky similar to those from the analytic approximations, and the
correspondindnistogramsverecloseto normality Theanalyticestimatesn this caseare
probably appropriate.

One alternatie to bootstrapping in this case might be the use elili&od interals.
This method praides an analytic means of estimating the precision of parameter
estimates when the assumptions required for the information matrix approach are
guestionable. These intatg do not assume normality of the MLES, and are not
necessarily symmetric about the estimateswéder, for lage numbers of parameters,
calculating lilelihood interals can be computationally fidult.

5.3 Estimating \ariances br mean bycatch per set estimates.

In an attempt to deré analytic formuleae for theaviance of our estimates of E[Y], we
manipulated the l&lihood equations for the gative binomial with added zeros and
found simplified forms for the MLE of E[Y]. In some cases, the simplified form reduces
to thesamplemean Equation[6], andthevarianceof thatestimatois simply (suppressing
area and set type subscripts for simplicity)

var€[Y]) = (1/n)E[Y] = (1/n)(u+ap?), [10]

which can be estimated by substituting in MLEs for (a) and More simply using the
factthatthe estimatotis justthesamplemean theminimumvarianceunbiasedstimateof
[10] is the sampleariance,
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var€ry]) = [Z(yi-9)2] 1 (0-0), [11]

wherey is thesamplemean. In othercasesthe simplifiedformsfor the MLE of E[Y] are
slightly more compbe (Equations [7] and [8]), and Equations [10] and [11] no longer
apply It is possibleto derive expressionsanalogougo Equation[10], for the varianceof
Equations [7] and [8] in terms of the three model parameters (p), (a)anddwvever,
theseformulaearesocomplex asto beof no practicalusein estimationandno expression
analogous to Equation [11] seems possible.

Thus, for consistelyg we used bootstrap methods in all casesweder, when
possible (i.e., log and dolphin sets), we also estimatgdnces using Equation [11], and
found that the tw sets of results agreed to within about 5%.elillood interals may
also be feasible for estimating precision in this case.

We did not encounter the problem discussed in Section 5.2 (i.e. wqo$itive
obsenations in the case of dolphin sets) when bootstrapmngnce estimates of mean
bycatchperset. As discussedh Section5.1, estimategsor meanbycatchperset(1-p)u do
not depend solely on posié obserations.

5.4 Rounding ermors in the obsewations.

Themodelusedin this study the negative binomialwith addedzeros,is comprisef
two probabilistic components. As noted in Section 3.1, zalkeeg deried from the
negative binomial component can be interpreted as obsiens of small amounts of
discard, rounded dm to zero, while zeroalues from the probability mass component
can be interpreted agaxt zeros. This interpretation is based on the assumption of an
underlying continuous distniftion for positve discard amounts (e.g., amma
distribution), upon which rounding errorsvebeen superimposed.

Oneconsequencef this interpretatioris thatthe meanamountof bycatchthatshould
be associated with “perfect” zeros is zero tons, while the mean amount that should be
associated with “rgative binomial” zeros is nonzero. Thus, strict adherence to this
interpretation of zeros leads to the conclusion that Equation [4] may be an underestimate
of E[Y]. However, if we assume a strictly decreasing underlying distigim for positve
bycatch, symmetric rounding of amountgkrthan one half tonould tend to increase
theestimate.In theabsencef aspecificmodelfor theroundingerrors,we did notattempt
to correct for ay bias due to rounding.

5.5 An altemative algorithm for maximizing the likelihood.

To maximize the liklihood for the indiidual model parameters (p), (a), apgl, (ve
used a quasi-Neon maximization algorithm. An alternegi method eailable for
mixture models (e.g., McLachlan and Basford, 1988; Lambert, 1992) uses the EM
algorithmto maximizethelik elihood. This methodis generallyapplicableto distributions
with added zeros. In situations with ngasovariates for the mixing probability (p) and
conditional meany() parameters, it pxades an alternate to the high-dimensional
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gradient search required by standard numerical optimization algorithms. The algorithm
can be implemented using standamgression techniques for generalized linear models.

We applied the EM algorithm to thegagive binomial with added zeros, using a
combination of logistic gression to maximize l&ihood for (p) and a quasi-gkhood
negative binomial rgression for (a) anqu (Lawless, 1977). This algorithm assumes a
constanshapgyaramete(a), althoughit mayalsobepossibleto modify themethodwhen
(a) depends on one or more caecal or continuous c@riates. Hwever, this approach
was not successful for the current data set because the logistissien for the mixing
probability failed to comerge, since, in the case of log sets, the ML estimate forgp) w
zero.

5.6 Alternative models considexd.

For this analysis, we used thegatve binomial with added zeros to modelget
bycatch. We consideredut rejectedwo alternatve models:the A-distribution (a mixture
of aprobabilitymassat zerowith alognormal(Aitchison,1955;Pennington1983)),anda
gamma distrilation mixed with a probability mass at zero (Coe and Stern, 1982). Both
modelshave beenusedin similar casesvherethedatato beanalyzecdhave containedarge
numbers of zeros. &Wtejected these models for this study because both were unsuited to
ourdata. TheA-distribution assumeshatthe naturallogs of the positive obsenationsare
distributed normallyor can be so transformed, and this assumptasinet plausible.
The data in this analysis were rounded to the nearest ton and the mode of e positi
obserations vas at one ton. Thus, no transformation could bring these datarto e
approximate normality The @mma mixture model &s not appropriate for the current
data because maximuméilkhood estimation for a highly eked gamma distriltion
dependdeaily uponsmall(nearzero)obsenations. In this study all obserationsin that
region were rounded to either zero or one, implying gdaelatve measurement ergor
and therefore potentially poor accya@nother more fundamental reasonywine
rejected these twmodels vas that both models mix a continuous disitidn on the
positive numberswith a probabilitymassat zero,andassumehatobsenationsfrom each
componentemaindistinguishable.In thecurrentdataset,smallpositve obserationsare
grouped together with zero obsatiens, and using a gative binomial in the mixture
allows the model to distinguish between “true zeros” (actual absence of bycatch) and
“rounded zeros” (bycatch so small that @asvgnored or missed).

5.7 Conclusions.

The methods deloped here were used to model fisheries bycatch data which were
rounded to intger \alues and which included wideharying numbers of zero
obsenations, depending on one or moreaates. The usual models for iggevalued
data, e.g. the Poisson distriton, did not fit the current data at all well because of the
extreme skwness of some of the obseddistrilutions. The ngative binomial with
added zeros is more fible than the standard models, andvmted a much better fit to
the current data.
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Modelling thesedatawith a parametrigorobability distribution allowed usto describe
patterns in the bycatch in some detail, foaraple, estimating the percentage of “true
zeros’vs.“roundedzeros”. In contrastcomputingnon-parametriestimate®f meanand
variance wuld not gve ary indication of the patterns in the intiual obserations.

While averageor total bycatchis of significantinterest,it is alsoimportantto quantifythe
amount of bycatch possible for an mdual set. Assuming that the parametric model is
acceptecisappropriatepnecanestimatefor example whatthe probabilityis that,dueto
random chance alone, bycatch from a particular boat xaéed a certain limit in a fed
number of sets.

Modelling thedatain aregressiorframevork allowedusto testfor dependencef the
model parameters upon thevadgates. In turn, dependencies of the model parameters
were transformed into statements about the mean bycatch per set as a function of set type
andgeographi@rea. In particular we wereableto incorporatearealdependencato our
estimates of mean bycatch per set only when appropriate. Additiomaliyere able to
distinguishwhetherdifferencesn meanbycatchweredueto differencesn theproportion
of zero obserations, or due to dérences in the distriltion of positve obserations.

In this report we modelled data from obsions of fisheries bycatch, Wwever the
modelis moregenerallyapplicableto integervalueddatawhich exhibit alarge proportion
of zero obserations combined with long posié tails. Both catgorical or continuous
covariates may be incorporated into the model.
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FIGURE 1. School set discards in aga 1. Bars indicate obseted frequencies, lines
indicate fitted frequencies.
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FIGURE 2. Schoolsetdiscardsin area3. Two obsewationslarger than 100tons not
shown. Bars indicate obseved frequencies, lines indicate fitted fquencies.
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FIGURE 3. Dolphin set discards in all aeras. Bars indicate obseed frequencies,
lines indicate fitted frequencies.
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FIGURE 4. Log set discards in aea 1. En obsewations larger than 100 tons not
shown. Bars indicate obseved frequencies, lines indicate fitted fquencies.
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FIGURE 5. Log set discards in aea 3. Three obsevations larger than 100 tons not
shown. Bars indicate obseved frequencies, lines indicate fitted fquencies.
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FIGURE 6. Geographic strata used in deeloping models to estimate mean bycatch
per setfor the U.S.tuna purse-seinefleetfishing in the easten tr opical Pacific Ocean,
1989-1992 (Ederal Register 1989).
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FIGURE 7. (Lack of) relationship between tons of tuna bycatch and tons of tuna
loadedfor the U.S.tuna purse-seinefleetfishing in the easten tr opical Pacific Ocean,
1989-1992.
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FIGURE 8. Estimated mean tuna bycatch per sebf the U.S. tuna purse-seine fleet
fishing in the easten tr opical Pacific Ocean,1989-1992.Geographicareasasdefined
in Federal Register (1989). &vled estimates ag fishery-wide, acoss all aeas.
Standard errors indicated by error bars.
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FIGURE 9. Coefficients of wariation for estimates of the model parameters (p), (a),
and (), and for estimates of mean bycatch per sebf the U.S. tuna purse-seine fleet
fishing in the easten tr opical Pacific Ocean,1989-1992.Geographicareasasdefined
in Federal Register (1989). &vled estimates ag fishery-wide, acoss all aeas.
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FIGURE 10. Sample histograms of 1000 bootstrapeplicates of estimates of the
negative binomial parameter (1), for dolphin, schoolfish, and log sets. See texirfa
description of the parameter
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